
NAG C Library Function Document

nag_zgeqrf (f08asc)

1 Purpose

nag_zgeqrf (f08asc) computes the QR factorization of a complex m by n matrix.

2 Specification

void nag_zgeqrf (Nag_OrderType order, Integer m, Integer n, Complex a[],
Integer pda, Complex tau[], NagError *fail)

3 Description

nag_zgeqrf (f08asc) forms the QR factorization of an arbitrary rectangular complex m by n matrix. No
pivoting is performed.

If m � n, the factorization is given by:

A ¼ Q
R
0

��

where R is an n by n upper triangular matrix (with real diagonal elements) and Q is an m by m unitary
matrix. It is sometimes more convenient to write the factorization as

A ¼ Q1 Q2 Þð R
0

��

which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

A ¼ Q R1 R2 Þð ;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of minðm;nÞ elementary reflectors
(see the f08 Chapter Introduction for details). Functions are provided to work with Q in this representation
(see Section 8).

Note also that for any k < n, the information returned in the first k columns of the array a represents a QR
factorization of the first k columns of the original matrix A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08asc

[NP3645/7] f08asc.1

2: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

3: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: n � 0.

4: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ when
order ¼ Nag ColMajor and at least maxð1; pda�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.

On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the unitary matrix
Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the unitary matrix Q and the
remaining elements are overwritten by the corresponding elements of the m by n upper trapezoidal
matrix R.

The diagonal elements of R are real.

5: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:

if order ¼ Nag ColMajor, pda � maxð1;mÞ;
if order ¼ Nag RowMajor, pda � maxð1;nÞ.

6: tau½dim� – Complex Output

Note: the dimension, dim, of the array tau must be at least maxð1;minðm; nÞÞ.
On exit: further details of the unitary matrix Q.

7: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

f08asc NAG C Library Manual

f08asc.2 [NP3645/7]

NE_INT_2

On entry, pda ¼ hvaluei, m ¼ hvaluei.
Constraint: pda � maxð1;mÞ.
On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ E, where

kEk2 ¼ Oð�ÞkAk2;

and � is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately 8
3
n2ð3m� nÞ if m � n or

8
3
m2ð3n�mÞ if m < n.

To form the unitary matrix Q this function may be followed by a call to nag_zungqr (f08atc):

nag_zungqr (order,m,m,MIN(m,n),&a,pda,tau,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_zgeqrf (f08asc).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

nag_zungqr (order,m,n,n,&a,pda,tau,&fail)

To apply Q to an arbitrary complex rectangular matrix C, this function may be followed by a call to
nag_zunmqr (f08auc). For example,

nag_zunmqr (order,Nag_LeftSide,Nag_ConjTrans,m,p,MIN(m,n),&a,pda,
tau,&c,pdc,&fail)

forms C ¼ QHC, where C is m by p.

To compute a QR factorization with column pivoting, use nag_zgeqpf (f08bsc).

The real analogue of this function is nag_dgeqrf (f08aec).

9 Example

To solve the linear least-squares problem

minimize kAxi � bik2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08asc

[NP3645/7] f08asc.3

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i

�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

1
CCCCCCA

0
BBBBBB@

and

B ¼

�1:54þ 0:76i 3:17� 2:09i
0:12� 1:92i �6:53þ 4:18i

�9:08� 4:31i 7:28þ 0:73i
7:49þ 3:65i 0:91� 3:97i

�5:63� 2:12i �5:46� 1:64i
2:37þ 8:03i �2:84� 5:86i

1
CCCCCCA

0
BBBBBB@

:

9.1 Program Text

/* nag_zgeqrf (f08asc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, m, n, nrhs, pda, pdb, tau_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *b=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08asc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%ld%*[^\n] ", &m, &n, &nrhs);

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = m;

#else
pda = n;
pdb = nrhs;

#endif
tau_len = MIN(m,n);

f08asc NAG C Library Manual

f08asc.4 [NP3645/7]

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) ||

!(b = NAG_ALLOC(m * nrhs, Complex)) ||
!(tau = NAG_ALLOC(tau_len, Complex)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read A and B from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= nrhs; ++j)

Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);
}

Vscanf("%*[^\n] ");

/* Compute the QR factorization of A */
f08asc(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08asc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute C = (Q**H)*B, storing the result in B */
f08auc(order, Nag_LeftSide, Nag_ConjTrans, m, nrhs, n, a, pda,

tau, b, pdb, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08auc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute least-squares solution by backsubstitution in R*X = C */
f07tsc(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs,

a, pda, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from f07tsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print least-squares solution(s) */
Vprintf("\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,

Nag_BracketForm, "%7.4f", "Least-squares solution(s)",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (tau) NAG_FREE(tau);
return exit_status;

}

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08asc

[NP3645/7] f08asc.5

9.2 Program Data

f08asc Example Program Data
6 4 2 :Values of M, N and NRHS

(0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
(0.62,-0.46) (1.01, 0.02) (0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) (0.19,-0.54) (-0.98,-0.36) (0.22,-0.20)
(0.83, 0.51) (0.20, 0.01) (-0.17,-0.46) (1.47, 1.59)
(1.08,-0.28) (0.20,-0.12) (-0.07, 1.23) (0.26, 0.26) :End of matrix A
(-1.54, 0.76) (3.17,-2.09)
(0.12,-1.92) (-6.53, 4.18)
(-9.08,-4.31) (7.28, 0.73)
(7.49, 3.65) (0.91,-3.97)
(-5.63,-2.12) (-5.46,-1.64)
(2.37, 8.03) (-2.84,-5.86) :End of matrix B

9.3 Program Results

f08asc Example Program Results

Least-squares solution(s)
1 2

1 (-0.4936,-1.1993) (0.7535, 1.4404)
2 (-2.4708, 2.8373) (5.1726,-3.6235)
3 (1.5060,-2.1830) (-2.6609, 2.1334)
4 (0.4459, 2.6848) (-2.6966, 0.2711)

f08asc NAG C Library Manual

f08asc.6 (last) [NP3645/7]

	f08asc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

