f08 — Least-squares and Eigenvalue Problems (LAPACK) f08asc

NAG C Library Function Document
nag_zgeqrf (f08asc)

1 Purpose

nag_zgeqrf (f08asc) computes the QR factorization of a complex m by n matrix.

2 Specification

void nag_zgeqrf (Nag_OrderType order, Integer m, Integer n, Complex al[],
Integer pda, Complex tau[], NagError *fail)

3 Description

nag_zgeqrf (f08asc) forms the QR factorization of an arbitrary rectangular complex m by n matrix. No

pivoting is performed.
R
+=a(5)

where R is an n by n upper triangular matrix (with real diagonal elements) and () is an m by m unitary
matrix. It is sometimes more convenient to write the factorization as

1= a)})

If m > n, the factorization is given by:

which reduces to
A=QR,
where), consists of the first n columns of @, and @), the remaining m — n columns.
If m < n, R is trapezoidal, and the factorization can be written
A=Q(R Ry),
where R, is upper triangular and R, is rectangular.

The matrix) is not formed explicitly but is represented as a product of min(m,n) elementary reflectors
(see the f08 Chapter Introduction for details). Functions are provided to work with () in this representation
(see Section 8).

Note also that for any k < n, the information returned in the first £ columns of the array a represents a QR
factorization of the first k£ columns of the original matrix A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] f08asc.1

f08asc NAG C Library Manual

2: m — Integer Input
On entry: m, the number of rows of the matrix A.

Constraint: m > 0.

3: n — Integer Input
On entry: n, the number of columns of the matrix A.

Constraint: n > 0.

4: a[dim| — Complex Input/Output

Note: the dimension, dim, of the array a must be at least max(l,pda x n) when
order = Nag_ColMajor and at least max(1, pda x m) when order = Nag RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i,7)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: the m by n matrix A.

On exit: if m > n, the elements below the diagonal are overwritten by details of the unitary matrix
() and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the unitary matrix () and the
remaining elements are overwritten by the corresponding elements of the m by n upper trapezoidal
matrix R.

The diagonal elements of R are real.

5: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor, pda > max(l, m);
if order = Nag RowMajor, pda > max(1,n).
6: tau[dim| — Complex Output
Note: the dimension, dim, of the array tau must be at least max(1, min(m,n)).

On exit: further details of the unitary matrix Q).

7: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

f08asc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08asc

NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix A + £, where
1E]l, = O All,,

and ¢ is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately §n2(3m—n) if m>n or

§m2(3n —m) if m <n.
To form the unitary matrix) this function may be followed by a call to nag_zungqr (f08atc):
nag_zungqgr (order,m,m,MIN(m,n),&a,pda,tau,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_zgeqrf (f08asc).

When m > n, it is often only the first n columns of) that are required, and they may be formed by the
call:

nag_zungqr (order,m,n,n,&a,pda,tau,&fail)

To apply @ to an arbitrary complex rectangular matrix C, this function may be followed by a call to
nag_zunmgqr (f08auc). For example,

nag_zunmgr (order,Nag _LeftSide,Nag_ConjTrans,m,p,MIN(m,n),&a,pda,
tau, &c,pdc,&fail)

forms C' = QHC, where C' is m by p.
To compute a QR factorization with column pivoting, use nag_zgeqpf (f08bsc).

The real analogue of this function is nag_dgeqrf (f08aec).

9 Example

To solve the linear least-squares problem
minimize ||Az; — b;,, i=1,2

where b, and b, are the columns of the matrix B,

[NP3645/7] f08asc.3

f08asc NAG C Library Manual

0.96 —0.81¢ —0.03+0.96: —0.91+2.060 —0.0540.41:
—098+4198; —1.20+40.19¢ —0.66+0.42¢ —0.81 4+ 0.56¢
0.62 — 0.467 1.01 4 0.02¢ 0.63 —0.17¢ —1.11 4+ 0.60¢
—0.37 4+ 0.38¢ 0.19 -0.54¢ —0.98 —0.36¢ 0.22 —0.20¢
0.83 4+ 0.51% 0.204+0.01¢ —0.17 — 0.46¢ 1.47 4+ 1.59%¢
1.08 —0.281 0.20 —0.12¢ —0.07 + 1.23¢ 0.26 + 0.26¢

A:

and

—1.5440.76: 3.17 —2.09¢
0.12-192¢ —-6.53 +4.18:

B— —9.08 —4.31¢ 7.28 +0.73%
7.49 +3.65¢ 0.91 —3.97¢

—5.63 —2.129 —5.46 — 1.64:
2.37+48.03t —2.84 —5.86¢

9.1 Program Text

/* nag_zgeqrf (f08asc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, m, n, nrhs, pda, pdb, tau_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *b=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define B(I,J) b[(J-1)#*pdb + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)#*pda + J - 1]

#define B(I,J) b[(I-1)*pdb + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);

Vprintf ("f08asc Example Program Results\n");

/* Skip heading in data file */

Vscanf ("s*x["\n] ");

Vscanf ("%$1d%1d%1d%*["\n] ", &m, &n, &nrhs);
#ifdef NAG_COLUMN_MAJOR

pda = m;

pdb = m;
#else

pda = n;

pdb = nrhs;
#endif

tau_len = MIN(m,n);

f08asc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08asc

/* Allocate memory */

if (!(a = NAG_ALLOC(m * n, Complex)) ||
(b = NAG_ALLOC(m * nrhs, Complex)) ||
! (tau = NAG_ALLOC(tau_len, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A and B from data file =*/
for (i = 1; i <= m; ++1)
{
for (3 = 1; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,J).im);
}
Vscanf ("s*["\n] ");
for (i = 1; i <= m; ++1i)
{
for (j = 1; j <= nrhs; ++3j)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,Jj).im);
}
Vscanf ("$*[*\n] ");

/* Compute the QR factorization of A */
fO8asc(order, m, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08asc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute C = (Q**H)*B, storing the result in B */
fO08auc(order, Nag_LeftSide, Nag_ConjTrans, m, nrhs, n, a, pda,
tau, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8auc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute least-squares solution by backsubstitution in R*X = C */
fO7tsc(order, Nag _Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs,
a, pda, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7tsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print least-squares solution(s) */

Vprintf ("\n");

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,
Nag_BracketForm, "%7.4f", "Least-squares solution(s)",
Nag_IntegerLabels, 0O, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

END:
if (a) NAG_FREE (a)
if (b) NAG_FREE (b) ;
if (tau) NAG_FREE (tau);
return exit_status;

7

[NP3645/7] f08asc.5

f08asc

9.2 Program Data

fO08asc Example Program Data
6 4 2

(0.96,-0.81) (-0.03, 0.96) (-0.91, 2.
(-0.98, 1.98) (-1.20, 0.19) (-0.66, O.
(0.62,-0.46) (1.01, 0.02) (0.63,-0.
(-0.37, 0.38) (0.19,-0.54) (-0.98,-0.
(0.83, 0.51) (0.20, 0.01) (-0.17,-0.
(1.08,-0.28) (0.20,-0.12) (-0.07, 1.
(-1.54, 0.76) (3.17,-2.09)

(0.12,-1.92) (-6.53, 4.18)
(-9.08,-4.31) (7.28, 0.73)

(7.49, 3.65) (0.91,-3.97)
(-5.63,-2.12) (-5.46,-1.64)

(2.37, 8.03) (-2.84,-5.86)

9.3 Program Results

fO08asc Example Program Results
Least-squares solution(s)

1

1 (-0.4936,-1.1993) (0.7535, 1.4404
2 (-2.4708, 2.8373) (5.1726,-3.6235
3 (1.5060,-2.1830) (-2.6609, 2.1334
4 (0.4459, 2.6848) (-2.6966, 0.2711

2
)
)
)
)

~ e~~~ o~~~

ORr ORr OO

.05,
.81,
.11,
.22,-
.47,
.26,

NAG C Library Manual

:Values of M, N and NRHS

0.
0.
0.
0.
1.
0.

41)

:End of matrix A

:End of matrix B

f08asc.6 (last)

[NP3645/7]

	f08asc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

